

Epigenetic control of chromatindependent transcription – Lessons from p53, AP-1, Brd4, and HPV.

Cheng-Ming CHIANG University of Texas Southwestern Medical Center, Dallas, TX, USA

Transcription in higher eukaryotes is controlled by an array of transcription factors, including the general transcription machinery, general cofactors, and gene-specific activators and repressors. The complexity of gene regulation is further conferred by the existence of multiple protein family members recognizing consensus or non-canonical DNA-binding sequences. The chromatin structure in the human genome and posttranslational modification on protein molecules provide an additional level of control in modulating gene activity. In this lecture, I will review these control mechanisms using human papillomavirus (HPV) E6 and E2 proteins as examples to illustrate how DNA tumor virus-encoded transcriptional regulators are able to reprogram cellular activities by targeting p53 tumor suppressor protein and activator protein-1 (AP-1), respectively, via recruitment of distinct coregulators, such as p300 histone acetyltransferase and the chromatin adaptor bromodomain-containing protein 4 (Brd4). The interplay among these viral and cellular proteins and the crosstalk between different posttranslational modifications regulate gene activity in response to various environmental stresses.

References:

Thomas, M.C. and C.-M. Chiang. (2005) E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. *Mol. Cell* 17: 251-264.

Thomas, M.C. and C.-M. Chiang. (2006) The general transcription machinery and general cofactors. *Critical Reviews in Biochemistry and Molecular Biology* 41: 105-178.

Wu, S.-Y., A.Y. Lee, S.Y. Hou, J.K. Kemper, H. Erdjument-Bromage, P. Tempst, and C.-M. Chiang. (2006) Brd4 links chromatin targeting to HPV transcriptional silencing. *Genes Dev.* 20: 2383-2396.

Wu, S.-Y. and C.-M. Chiang. (2007) The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. *J. Biol. Chem.* 282: 13141-13145.

Lee, A-Y. and C.-M. Chiang. (2009) Chromatin adaptor Brd4 modulates E2 transcription activity and protein stability. *J. Biol. Chem.* 284: 2778-2786.

Wu, S.-Y. and C.-M. Chiang. (2009) Crosstalk between acetylation and sumoylation in regulating p53-dependent chromatin transcription and DNA binding. *EMBO J.* 28: 1246-1259.

Chiang, C.-M. (2009) Brd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4. *F1000 Biology Reports* 1:98.

Wang, W.-M., S.-Y. Wu, A-Y. Lee, and C.-M. Chiang. (2011) Binding site specificity and factor redundancy in activator protein-1-driven human papillomavirus chromatin-dependent transcription. *J. Biol. Chem.* 286: 40974-40986.

Chiang, C.-M. (2012) p53-Aurora A mitotic feedback loop regulates cell cycle progression and genomic stability. *Cell Cycle* 11: 3719-3720.

Wu, S.-Y., A-Y. Lee, H.-T. Lai, H. Zhang, and C.-M. Chiang. (2013) Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. *Mol. Cell* 49: 843-857.